Southeast Regional Carbon Sequestration Partnership

Citronelle Project

*ENERGY BOP

Carbon Storage R&D Project Review Meeting Pittsburgh, PA August 18, 2015

> Gerald R. Hill, Ph.D. Senior Technical Advisor Southern States Energy Board

Presentation Outline

- Jerry Hill, SSEB
 - SECARB Overview
- Jerrad Thomas, Southern Company
 - Capture Unit Overview
 - Capture R&D Accomplishments
- Rob Trautz, EPRI
 - Storage Overview
 - Storage R&D Accomplishments

Bureau of Economic Geology

EPCI

Denbury [©]

SECARB Phase III

Anthropogenic Test

Capture: Alabama Power 's Plant Barry, Bucks, Alabama

Transportation: Denbury

Geo Storage: Denbury's Citronelle Field Citronelle, Alabama

Early Test

Denbury Resources' Cranfield Field Near Natchez, Mississippi

CO₂ Source: Denbury

CO₂ Transportation: Denbury

Saline MVA: GCCC

Gulf Coast

Carbon Center

SECARB Phase III Anthropogenic Test

- Carbon capture from Plant Barry (equivalent to 25MW of electricity).
- 12 mile CO₂ pipeline constructed by Denbury Resources.
- CO₂ injection into ~9.400 ft. deep saline formation (Paluxy) above Citronelle Field
- Monitoring of CO₂ storage during injection and 3years post-injection.

Plant Barry 25 MW Demo

Jerrad Thomas | Research Engineer Southern Company Services, Inc.

Carbon Capture and Storage Projects

25-MW CCS Demo at Plant Barry

- 90% CO₂ capture.
- Capture, compression, transport, sequestration.
- ~115,000 tons sequestered, ~240,000 tons captured.
- Largest CCS facility on a fossil-fueled power plant in the U.S.

National Carbon Capture Center

- U.S. DOE facility operated by Southern Company.
- Accelerates commercialization of technologies.
- · Coal or natural gas constituents tests.
- Enables coal-based power plants to achieve near-zero emissions

Kemper County IGCC project

- 582 megawatts of power.
- State-of-the-art coal gasification design.
- Will use a four-billion-ton reserve of Mississippi lignite.
- Affordable, abundant, but little-used natural resource.
- Will capture at least 65% of its CO₂ emissions for EOR use.
- Will reduce nitrogen oxide, sulfur dioxide and mercury.
 SOUTHERN

Project Overview

- Located just north of Mobile, Alabama at Alabama Power Plant Barry
- Largest CO₂ capture project on a coal-fired power plant in the United States
- First CO₂ pipeline permitted and constructed in the State of Alabama
- First integration of a CO₂ capture plant on a coal plant with pipeline transportation and injection for

Information and Goals

- CO2 Capture and Compression
 - SCS/MHI collaboration with partners
 - KM-CDR capture technology
- Transportation and Sequestration
 - DOE SECARB Phase III "Anthropogenic Test"
 - 100-300 kMton of CO2 will be injected into a saline formation over 2-3 years
 - 12 mile CO2 pipeline to Denbury Resources, Inc. injection site into Citronelle Dome
- Objectives/Goals
 - Advance saline sequestration technology through large field test
 - Characterize CCS operations to support larger scale development and deployment
 - Continue outreach and education to ensure seamless deployment

CO2 Capture Plant

Plant Performance

- Gas In for CO₂ Capture Plant: June, 2011
- Commissioning of CO₂ Compressor: August, 2011
- Commissioning of CO₂ Pipeline: March, 2012
- CO₂ Injection: August, 2012 (America's Largest Integrated CCS from a Coal-fired Power Plant)

Items		Results
Total Operation Time	hrs	>10,000
Total Amount of Captured CO ₂	metric tons	>220,000
Total Amount of Injected CO ₂	metric tons	114,000
CO ₂ Capture Rate	metric tons per day	500
CO ₂ Removal Efficiency	%	90
CO2 Stream Purity	%	99.9+
Steam Consumption	ton-steam/ton-CO ₂	0.98

Project Test Items

ltem	Main Results				
Baseline mass and heat balance	Verified that steam consumption was lower than expectation under the design condition (CO ₂ removal efficiency: 90%, CO ₂ capture rate: 500MTPD).				
Emissions and waste streams monitoring	Successfully demonstrated amine emission reduction technologies under the various SO_3 concentration condition (2013)				
Parametric test for all	Verified operation performance under several controlled operating parameters changes. (2011-2012)				
process systems	Demonstrated several improved technologies for the cost reduction. (e.g. MHI Proprietary spray distributor) (2013)				
Performance optimization	Achieved 0.95 ton-steam/ton-CO₂ by optimizing steam consumption. (2011)				
High impurities loading test	Verified that the amine emission increased as a result of higher SO₃ loading . (Oct. 2011) Verified that the impurities were removed from the solvent by reclaiming operation. (2012, 2013)				

(1) Amine Emission Evaluation

- Amine emissions increased significantly with a small amount of SO3.
- MHI's amine emission reduction system decreases amine emissions down to less than 1/10 of the conventional system

High SO₃ in the gas

Low SO₃ in the gas

 SO_3 Concentration Fig. Relationship between SO_3 conc. and solvent emission

(2) Improved Technology

- Proprietary spray type distributor developed by MHI to reduce weight of tower internals
- Keeping the same performance as the trough type distributor approximately 50% cost reduction of tower internals was achieved

Fig. Trough Type Distributer

Fig. Spray Type Distributer (MHI Proprietary)

High Efficiency System

Project Scope

- Integrate a 25 MW waste heat recovery technology termed Mitsubishi High Efficiency System (HES) into 25 MW CCS plant and Plant Barry, Unit 5
- Recover low grade waste heat in flue gas and CO₂ to preheat condensate *replacing LP steam*
- Evaluate improvements in the energy performance and emissions profile of the integrated plants
- Employ 0.5MW mini ESP to test effect of HES on SO3 and trace metals emissions

Total Project Budget (\$MM)

Flue Gas Cooler captures SO₃

- Operates downstream of the APH
- Mechanism for removal of SO₃ from flue gas
 - $SO_3(g) + H_2O(g) --> H_2SO_4(g)$
 - H₂SO₄ (g) --> H₂SO₄ (l)
 - H₂SO₄ (I) condenses on fly ash in flue gas and a protective layer of ash on tube bundles
- Flue Gas Cooler tube skin temperature < SO₃ dewpoint
 - Alkaline species in fly ash (Ca, Na) neutralize H₂SO₄
 - Silicates, etc. physically adsorb H₂SO₄

Other benefits of Flue Gas Cooler

- Improve removal of Hg, Se, SO₃ across the ESP
- Reduce AQCS cost
 - Improve ESP performance
 - Improve FGD performance
 - Improve CCS performance
- Potential to simplify boiler/steam turbine cycles
- Improve plant heat rate

BP3 completes March 2016

Remaining project work

- Measure corrosion, erosion
- Test water quality
- Measure SO₃, trace metal removal southern and southern

Thank You!

For more information please contact:

<u>Jerrad Thomas</u> – Southern Company Services Project Manager for CCUS and Research Engineer Email: JERRTHOM@southernco.com Tel: 205-257-2425

ELECTRIC POWER RESEARCH INSTITUTE

SECARB Phase III Citronelle Project (Anthropogenic Test) in Alabama

Rob Trautz, Princ. Tech. Leader, EPRI

Carbon Storage R&D Project Review Meeting

18-August-2015

Acknowledgement

This presentation is based upon work supported by the Department of Energy National Energy Technology Laboratory under **DE-FC26-05NT42590** and was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Storage Project Objectives

- 1. Test the CO₂ flow, trapping and storage mechanisms of the Paluxy Formation
- 2. Demonstrate how a saline reservoir's architecture can be used to maximize CO_2 storage and minimize the areal extent of the CO_2 plume
- 3. Test the adaptation of commercially available oil field tools and techniques for monitoring CO_2 storage
- 4. Test experimental CO₂ monitoring activities, where such technologies hold promise for future commercialization
- 5. Begin to understand the coordination required to successfully integrate all four components (capture, transport, injection and monitoring) of the project
- 6. Document the permitting process for all aspects of a CCS project

Largest demonstration of CO_2 capture, transportation, injection, monitoring and storage from a coal-fired electric generating unit in the United States

TUTE

Advanced

Storage Site Overview—Citronelle Oilfield

System	Series	Stratigraphic Unit	Ма	jor Sub Units	Potential Reservoirs and Confining Zones		
	Plio- Pliocene		Citronelle Formation		Freshwater Aquifer		
	Miocene	Undifferentiated			Freshwater Aquifer		
- I	10		Chickasawhay Fm.		Base of USDW		
「ertia	gocene	Vicksburg Group	Bucatunna Clay		Local Confining Unit		
~	Eocer	Jackson Group			Minor Saline Reservoir		
		Claiborne Group	Talahatta Fm.		Saline Reservoir		
	δ	Wilcox Group	Hato	hetigbee Sand			
	Pa			Bashi Marl	Saline Reservoir		
	deocene		Salt Mountain LS				
		Midway Group	Porters Creek Clay		Confining Unit		
		Selma Group			Confining Unit		
	Upper	Eutaw Formation			Minor Saline Reservoir		
		Tuscaloosa Group	Upper Tuso.		Minor Saline Reservoir		
			Mid. Tusc	Marine Shale	Confining Unit		
			Lower Tusc.	Pilot Sand Massive sand	Saline Reservoir		
C	Lower	Washita-	Dantzler sand		Dantzler sand		Saline Reservoir
ret		Fredericksburg	E	Basal Shale	Primary Confining Unit		
aceous		Paluxy Formation	'Upper' 'Middle' 'Lower'		Injection Zone		
		Mooringsport			Confining Unit		
		Formation			Somming onit		
		Ferry Lake Anhydrite			Confining Unit		
		Donovan Sand		Upper'	Oil Reservoir		
				'Middle'	Minor Saline Reservoir		
				'Lower'	Oil Reservoir		

Storage Project Status

- Alabama Department of Environmental Management (ADEM) issued Class V permit, Nov. 2011
- ADEM granted permission to inject on August 8, 2012
 > Injection commenced on August 20, 2012
- Injection ended September 1, 2014
 - Approximately 114,104 metric tons of CO₂ injected
- A crosswell seismic survey acquired in June, 2014 captured a time-lapse image of the CO₂ plume
- Other testing and monitoring activities have indicated containment
- The project entered the *Post-Injection Site Care Period* on September 2, 2014
- Site closure based on demonstration of CO₂ containment and non-endangerment of USDW

1. Monitoring & Modeling Lines of Evidence

Anthropogenic Test MVA Program

- Multiple lines of evidence to confirm CO₂ containment include:
 - Soil CO₂ flux
 - PFT monitoring
 - Crosswell Seismic and VSP surveys
 - PNC logging (above zone saturation)
 - Pressure monitoring
- Assure non-endangerment of USDWs
 - Monitoring geochemistry of multiple aquifers
- Monitoring results are used to inform the reservoir simulation

MVA Elements and Frequency

	Frequency					
MVA Method	Continuous	Monthly	Quarterly	Annual	Milestone (Baseline, Injection, Post)	Conductor 16", 65#, H-40
Shallow						8 58", 45.5#, J-55
Soil flux						14
Groundwater sampling (USDW)						2
PFT survey						
Deep						
CO2 volume, pressure & composition						
Reservoir fluid sampling						
Injection, temperature & spinner logs						
Pulse neutron logs						
Crosswell seismic						
Vertical seismic profile (VSP)						
Experimental						
Distributed Temperature Sensing (DTS)						
Comparative fluid sampling methods						
MBM VSP						
Distributed Acoustic Sensing (DAS)						Production Casing
MBM VSP & OVSP Seismic						4 1/2 , 11.0 #, 3-55

CO₂ Containment—Soil CO₂ Flux and Tracer Monitoring

Soil CO₂ results appear to vary as a function of mean temperature and tracer surveys have been non-detect

Deep Monitoring— Time-Lapse Crosswell Seismic

- Crosswell seismic surveys allow for high-resolution mapping of the acoustic travel time (velocity) and seismic reflectors between a pair of wells
- When CO₂ displaces water in the formation, it changes the acoustic impedance of the rock
 - Acoustic wave decreases and its direct travel time increases
- Results from "repeat" surveys performed during or after CO₂ injection can be compared to a pre-injection "baseline" survey to image the extent of the CO₂ plume (referred to as "time-lapse imaging")
- Baseline and repeat 2-D crosswell seismic surveys were performed between the injection well and the observation well

Crosswell Survey Configuration and Parameters

- Pre-injection baseline survey acquired on January 19-26, 2012
- Repeat survey was acquired on June 14-23, 2014
- Source Type: Piezoelectric deployed in D-9-7#2 well
- Receiver type: Hydrophone 10 levels
 deployed in D-9-8#2 well
- 842' between D-9-7#2 and D-9-8#2 at reservoir depth

Schematic showing the open well completion in observation well D-9-8 during the baseline survey (left) and packer/tubing completion during the repeat (right)

Receivers were deployed in the open well during the baseline survey and inside the MBM tubing/packer assembly during the repeat survey, thus changing the data acquisition configuration

Baseline Survey Results

- Velocity tomograph and reflection image (right) provided a good representation of the reservoir and confining unit
 - ~10 feet vertical resolution
- No reservoir or confining unit discontinuities or small-scale faults were observed in the reflection data
- Layering observed in the Upper Paluxy will help disperse the CO₂ plume, thus minimizing its footprint
- Baseline velocity tomogram should be of sufficient quality for timelapse CO₂ plume imaging

Composite image mapping the seismic reflections (squiggles) superimposed on top of the velocity tomogram (colored background)

Comparison of Baseline and Repeat Data Quality

- First arrivals and reflection data from the baseline survey have strong amplitudes and little noise, representing good quality data
- The first arrivals for the repeat survey are fairly "weak" probably due to signal attenuation caused by deploying the hydrophones inside the "stiff" production tubing and packer
- The reflection data that follow the first arrivals are noisy and of poor quality for the repeat survey

Side-by-side comparison of a baseline (left) and repeat (right) shot gather

There is a noticeable decrease in the signal-to-noise ratio (SNR) between the baseline and repeat surveys, which limits data interpretation

ELECTRIC P RESEARCH Advanced Resource International, Inc.

Comparison of Crosswell Reflectors

Reflection data from the repeat survey are of poor quality and limited use. Likely cause is interference by tube waves moving up and down the well

Time-Lapse Differencing Using the Baseline and Repeat Velocity Tomograms

- First arrivals from repeat survey were of sufficient quality to produce a velocity difference image (right) showing regions where seismic velocity has changed over time
- Time-lapse difference image indicates a decrease in seismic velocity in the upper injection zone of up to 3%, suggesting an increase in CO₂ saturation

More importantly, no negative velocity anomalies are observed in or above the confining unit...implying no detectable leakage out of inj. zone

Pixelized difference tomography results without seismic reflection overlay showing positive velocity differences in warm colors and negative differences in cool colors

Plume Image Comparison with Spinner Surveys

- Time-lapse image shows CO₂ plume located primarily in Paluxy sands F-H
- October 2013 spinner survey show these sands taking only 10% of the flow

Sand	Sand Unit Properties (ft)			Nov 2012	Aug 2013	Oct 2013
Unit	Bottom	Тор	Thickness	Flow %	Flow %	Flow %
J	9,454	9,436	18	14.8	18.7	16.7
I	9,474	9,460	14	8.2	20.4	19.6
Н	9,524	9,514	10	2.8	7.4	7.7
G	9,546	9,534	12	2.7	2.1	0.9
F	9,580	9,570	10	0.0	1.2	1.2
Е	9,622	9,604	18	26.8	23.5	30.8
D	9,629	9,627	2	0.0	0.0	0.0
С	9,718	9,698	20	16.5	11.8	10.3
В	9,744	9,732	12	4.9	0.6	0.4
А	9,800	9,772	28	23.3	14.3	12.4

Plume Image Comparison with Simulation

© 2015 Electric Power Research Institute, Inc. All rights reserved.

Deep MVA – Pressure Response

Downhole pressure data is a primary input to the history match and plume model

Plan Next Steps

- Continue to use multiple lines of evidence to demonstrate CO₂ containment and non-endangerment during PISC
 - Continue shallow subsurface and surface monitoring activities
 - Conduct full VSP and crosswell seismic repeats
 - Additional water injection tests to monitor pressure transient times
- Engage regulators throughout project closure process
- Permit closure

Southeast Regional Carbon Sequestration Partnership

QUESTIONS

Carbon Storage R&D Project Review Meeting Pittsburgh, PA August 18, 2015